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Abstract

This paper addresses a multiplicative model for semantic
composition in a distributional semantic model. This paper
proposes new composition algorithms using a multiplicative
model by two approaches: to extend a multiplicative model by
averaging or weighting and to modify context-sensitive addi-
tive models such as Kintsch’s (2001) predication by replacing
vector addition with vector multiplication. In addition, this pa-
per examines conditions for the superiority of the multiplica-
tive models found in previous research by comparing two se-
mantic spaces constructed by latent semantic analysis (LSA)
and positive pointwise mutual information (PPMI) in terms of
the representational ability of composition algorithms. The ex-
periment using noun compounds demonstrated that the multi-
plicative model performed better than the additive model only
in the PPMI-based space, suggesting that component-wise
multiplication works effectively in a semantic space whose di-
mensions represent distinctive features. Some multiplicative
modifications of additive algorithms also improved the perfor-
mance in the PPMI-based space, but did not in the LSA-based
space. Interestingly, however, the extension of the multiplica-
tive model by weighting was effective in improvement of the
performance in the LSA-based spaces, although the extensions
of the multiplicative model were not effective in the PPMI-
based space.
Keywords: Distributional semantic models; Semantic spaces;
Vector composition; Component-wise multiplication; Latent
semantic analysis; Pointwise mutual information

Introduction
Recently there is a growing interest in vector-based semantic
space models or distributional semantic models in the field
of cognitive science (e.g., Landauer, McNamara, Dennis, &
Kintsch, 2007; McNamara, 2011) as well as in natural lan-
guage processing (e.g., Padó & Lapata, 2007; Turney & Pan-
tel, 2010). The primary reason for the growing interest is that
despite its simplicity the semantic space model has demon-
strated high performance of cognitive modeling for a num-
ber of cognitive tasks such as similarity judgment (Landauer
& Dumais, 1997), semantic priming (Jones, Kintsch, & Me-
whort, 2006), and metaphor comprehension (Utsumi, 2011).
In particular, the ability of the semantic space model to rep-
resent the meanings of single words has been extensively ex-
amined in a number of studies. However, less attention has
been paid to the problem of how to construct the semantic
representations of larger linguistic units such as phrases and
sentences. Given the creativity of human language that an
infinite number of phrases or sentences can be constructed
from a finite number of words, distributional semantic mod-
els should provide appropriate methods for constructing (or
composing) vectors for phrases or sentences from the vectors
of their constituent words. This paper addresses this problem.
In the previous studies on vector composition (e.g., Ba-

roni & Zamparelli, 2010; Mitchell & Lapata, 2008, 2010;
Zanzotto et al., 2010), two classes of composition methods,

namely an additive model and a multiplicative model, have
been proposed and evaluated in a number of tasks. The
widely-used algorithm in the additive class is to compute the
centroid of constituent word vectors. Although the centroid
method simply combines the contents of all the constituent
words involved in the target phrase or sentence, more sophis-
ticated algorithms in the additive class such as predication
(Kintsch, 2001) and comparison (Utsumi, 2011) use addi-
tional information (i.e., words that are semantically similar
or related to the constituent words) to compute contextually
dependent meanings. These additive algorithms have been
shown to be effective in a number of applications of a dis-
tributional semantic model (e.g., Kintsch, 2001; Landauer et
al., 2007). However, recent studies (Mitchell & Lapata, 2008,
2010) have demonstrated that component-wise multiplication
of multiple vectors, one representative method of the multi-
plicative class model, performs better than the centroid algo-
rithm and other additive methods. This finding is particularly
interesting because until recently the centroid algorithm and
other additive models have been widely accepted as an effec-
tive method for vector composition. Hence, this paper is con-
cerned with the multiplicative model and tackles two issues
concerning the multiplicative model.
One issue addressed in this paper is why and when a mul-

tiplicative model performs better than an additive model. As
mentioned above, some studies have found the superiority of
the multiplicative model in general and component-wisemul-
tiplication in particular, but no studies have revealed the ratio-
nale behind, and conditions for, the superiority of the multi-
plicative model. Our working hypothesis is that, unless di-
mensions of a semantic space represent distinctive features
or meanings, component-wise multiplication does not work
effectively, because its function is to highlight dimensions
relevant to both vectors and downplay irrelevant dimensions.
This paper examines the validity of this hypothesis using (at
least) two different types of semantic spaces whose dimen-
sions represent or do not represent distinctive features.
Another important issue of interest is to propose new

composition algorithms on the basis of the superiority of
component-wise multiplication. Two approaches are consid-
ered to devise a method for semantic composition. One ap-
proach is that we can extend the component-wise multiplica-
tion algorithm by averaging or weighting. The purpose of this
modification is to adjust the degree of highlighting relevant
dimensions to a more appropriate level. Weighting is also
aimed at involving the information of word order in a com-
position vector. Another approach is to modify the additive
model using a multiplicative function. For example, the pred-
ication algorithm (Kintsch, 2001) generates the composition
vector of a two-word phrase by computing the centroid of the
both words and some semantic neighbors of a predicate word
that are also related to an argument word. If the multiplica-
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tive model generally performs better than the additive model,
it naturally follows that we can obtain new and possibly ef-
ficient algorithms by replacing vector addition in the predi-
cation algorithm with component-wise multiplication. In this
paper, we propose new algorithms for vector composition by
adopting these approaches, and compare the representational
ability of these algorithms with the original ones.
In order to evaluate the ability of new composition algo-

rithms, we conducted an experiment using two-noun com-
pounds. In the experiment, the vector for noun compounds
was computed by the composition algorithms, and its repre-
sentational ability was evaluated using the plausibility of the
semantic relatedness or similarity computed between vectors
for noun compounds and semantically related words. The
plausibility of the similarity was evaluated by two measures:
correlation between the computed cosine similarity and hu-
man similarity judgment for compound-word pairs, and rank-
ing of the similarity of compound-word pairs. Furthermore,
we also examined the hypothesis that multiplicative mod-
els perform differently depending on the types of semantic
spaces using two different semantic spaces. The experiment
was conducted in two languages, i.e., English and Japanese,
to test whether different languages show consistent results.

Composition Algorithm
In this section, we review existing methods for vector compo-
sition and propose new methods by extending or modifying
the existing methods. Throughout this section, we explain the
methods by assuming that we are generating the vector v for
a two-word phrase or sentence P (A) that comprises the ar-
gument (or the head) A (whose vector is denoted by a) and
the predicate (or the modifier) P (whose vector is denoted by
p). For example, a vector for the sentence “A horse runs” is
computed from the vector for the argument “horse” and the
vector for the predicate “run.”

Reviewing the existing composition algorithms
The simplest but widely used additivemethod for vector com-
position is to compute the centroid of constituent word vec-
tors i.e., v = (p+a)/2. Note that, when the cosine is used as
a similarity measure, additive models yield the same result of
similarity computation, whether vectors are averaged or sim-
ply summed. Hence, the simple addition (i.e., v = a + p)
suffices as the centroid algorithm.
A more sophisticated method, namely dilation, in the ad-

ditive class is proposed by Mitchell and Lapata (2010); this
method stretches or “dilates” the argument (or head) vector
along the direction of the predicate (or modifier) vector. This
can be done by decomposing the argument vector a into two
orthogonal vectors, i.e., a vector x parallel to p and a vector
y orthogonal to p, and then stretching the parallel component
x so that a modified vector v of a is more like p.

v = λx + y = λ
p · a
p · pp +

(
a − p · a

p · pp

)

= (λ − 1)
p · a
p · pp + a (1)

In Equation1, λ is a parameter that represents the degree of
dilation. When λ = 1, the resulting vector v is identical to the

argument vector a. Mitchell and Lapata (2010) demonstrated
that the dilation algorithm performs consistently well on a
phrase similarity task.
The predication algorithm proposed by Kintsch (2001)

does not simply combine the constituent vectors, but embod-
ies the semantic interaction between constituent words on the
basis of his construction-integration model. The predication
algorithm makes use of semantic neighbors (i.e., words simi-
lar to the constituent words) to embody the interaction; it first
choosesm nearest neighbors of a predicate P (i.e., m words
with the highest cosine to P ) and then picks up k neighbors
of P that are also related to A. Finally the algorithm com-
putes the centroid vector of P , A, and the k neighbors of P
as a vector representation of P (A). Formally, the predication
algorithm computes a composition vector v by

v = p + a +
∑

qi ∈Q

qi, (2)

where Q denotes a set of the k neighbors of P that are also
related to A.
Utsumi (2011) proposes a different algorithm for vector

composition, namely, comparison, to compute the meanings
of metaphors. This algorithm uses a set of common neigh-
bors of two constituent words to capture the relevance be-
tween them. It is motivated by the fact that the interaction
between constituent words embodied in the predication algo-
rithm is rather predicate-directed. Formally, the comparison
algorithm computes a compound vector p using the

v = a +
∑

ci ∈C

ci, (3)

where C denotes a set of k common neighbors of A and P .
The set C of common neighbors can be obtained by find-
ing the smallest i that satisfies |Ni(A) ∩ Ni(P )| ≥ k, where
Ni(wj) denotes a set of the top i neighbors of the word w j .
Turning now to the multiplicative model, the simplest

method is to use a function of component-wise multiplication
for vector composition:

v = p � a (4)
vi = pi · ai (5)

where the symbol� expresses that two vectors are multiplied
component-wise.
Circular convolution is also a member of the multiplicative

class, and defined as

v = p � a (6)

vi =
n−1∑
j=0

pj mod n · a(i−j) mod n. (7)

Proposing new composition algorithms
Extension of component-wise multiplication This ap-
proach extends the component-wise multiplication algorithm
in Equation 4 in two ways: averaging and weighting.

vi =
√

pi · ai (8)
vi = pα

i · ai (9)
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In the averaging approach expressed in Equation8, each com-
ponent of a composed vector is calculated as a geometric
mean, rather than a simple multiplication. This extended
algorithm can be regarded as corresponding to the centroid
algorithm in the additive class. On the other hand, in the
weighting approach in Equation 9, the predicate vector is
weighted by the factor α. When 0 < α < 1, the argument
vector has a stronger influence on the resulting composition
vector, while the predicate vector has when α > 1. This
modification can be regarded as a multiplicative version of
the dilation algorithm.

Modification of context-sensitive additive models using a
multiplicative model This approach modifies the context-
sensitive additive models, namely the predication and com-
parison algorithms, to benefit from the multiplicative model.
One way of modifying these additive models is to replace

the vector addition (+) with the vector multiplication (�).
For example, the predication algorithm can be modified as

v = p � a �
∏

qi ∈Q

qi (10)

v =
(k+2)

√
p � a �

∏
qi ∈Q

qi. (11)

Equation 10 shows a simple multiplicative version of the
predication algorithm, in which all the argument, predicate,
and neighbor vectors are combined by component-wise mul-
tiplication. On the other hand, Equation11 is an averaged ver-
sion of the multiplicative predication algorithm, in which the
argument, predicate, and neighbor vectors are geometrically
averaged. (Note that in these equations the product symbol
denotes the product by component-wise multiplication, and
the radical symbol denotes the component-wise root.)
Another way of modifying the additive models is to keep

the sum of neighbor vectors unchanged, and multiply the ar-
gument, predicate, and the sum of neighbor vectors.

v = p � a �
∑

qi ∈Q

qi (12)

v =
3
√

p � a �
∑

qi ∈Q

qi (13)

This modification is motivated by the assumption that the
contextually dependent meaning of a predicate should be
computed by the disjunction of neighbors rather than by the
conjunction of neighbors. For example, according to this as-
sumption, the meaning of the predicate run in “A horse runs”
should be represented as “move, flee, or walk,” rather than
“move, flee, and walk”
The comparison algorithm can be modified by the same

approaches embodied in Equations 10–13. (These modifica-
tions are listed in Table 1.)

Method
Materials
Compound-word pairs Noun compounds we used in the
experiment comprised two nouns (i.e., head and modifier)

such as “apple pie” or “ruling class.” These compounds
included two types: familiar noun compounds that occur
in the corpus from which semantic spaces were constructed
and novel noun compounds that do not occur in the corpus.
The selection criterion for compounds was that familiar com-
pounds should occur at least 20 times in the corpus, and
both types of compounds should be included in the thesaurus.
From the compounds that satisfied this criterion, we ran-
domly selected 50 familiar and 50 novel compounds in both
languages for evaluation. For each of these noun compounds,
a semantically related word was selected randomly from syn-
onyms, hypernyms and coordinate words of that compound.
In this experiment, the written and non-fiction parts of the

British National Corpus of the size of 54.7 million words
and Japanese newspaper corpora (i.e., four years’ worth of
Mainichi newspaper articles and two year’s worth of Nikkei
newspaper articles) of the size of 26.2 million words were
used as a corpus. They contained 73,422 English and 63,875
Japanese different words. The thesauri used in this exper-
iment were English WordNet 3.0 and a Japanese thesaurus
“Nihongo Dai-Thesaurus.”
Semantic space In order to test our working hypothesis
that component-wise multiplication works effectively in the
semantic space whose dimensions represent distinctive fea-
tures, we used two different semantic spaces.
One semantic space is based on the word-word matrix

whose elements are word cooccurrence frequencies within a
context window spanning some number of words. This model
is a popular semantic space (e.g., Bullinaria & Levy, 2007;
Recchia & Jones, 2009) and it was also used by Mitchell and
Lapata’s (2008, 2010) study demonstrating the superiority of
the component-wise multiplication. Formally, the element
aij of the word-word matrix is initially the number of times
the word wj occurs within n words around the word w i, and
weighted by positive pointwise mutual information (PPMI;
Bullinaria & Levy, 2007; Turney & Pantel, 2010). In this
study, we used a context window of five words, i.e., n = 5.
Another semantic space was constructed using latent se-

mantic analysis (LSA; Landauer & Dumais, 1997; Landauer
et al., 2007). LSA is based on the word-document matrix
whose element aij is the number of times the word wi occurs
in the j-th document. The elements of this initial matrix are
weighted, and the matrix is smoothed by singular value de-
composition (SVD). Among a number of weighting schemes
that have been proposed so far, we used Quesada’s (2007)
scheme in which the initial word frequency is weighted by
the product of its logarithm and the entropy. The number of
the reduced dimensions was determined to be 300.
One essential difference between these two semantic

spaces lies in the meaningfulness of vector dimensions. In
the PPMI-based semantic space, each vector component rep-
resents a distinctive feature, namely, a context word, while
the dimensions of the LSA-based semantic space do not have
such the clear meaning. Hence, by comparing these two
spaces in terms of the performance of the multiplicative mod-
els, we tested the working hypothesis that component-wise
multiplication works well in a semantic space with semanti-
cally meaningful dimensions. In addition, to test whether the
smoothing by SVD is a main cause of the loss of dimension
semantics, we also examined the performance of the PPMI-
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Table 1: Composition algorithms compared in the experiment

Algorithm (abbr.) Function
Centroid (CENT) vi = pi + ai

Dilation (DILA) vi = (λ − 1)pi

P
j pjaj + ai

P
j pjpj

Predication (PRED) vi = pi + ai +
P

j qji

Multiplicative (+MUL) vi = pi · ai · Q
j qji

Geometrically averaged (+AVE) vi =
(k+2)

q
pi · ai · Q

j qji

Partially multiplicative (+PARTMUL) vi = pi · ai · P
j qji

Partially averaged (+PARTAVE) vi =
3
q

pi · ai · P
j qji

Comparison (COMP) vi = ai +
P

j cji

Multiplicative (+MUL) vi = ai · Q
j cji

Geometrically averaged (+AVE) vi =
(k+1)

q
ai ·

Q
j cji

Partially multiplicative (+PARTMUL) vi = ai · P
j cji

Partially averaged (+PARTAVE) vi =
q

ai · P
j cji

Multiplication (MULT) vi = pi · ai

Averaged (+AVE) vi =
√

pi · ai

Weighted (+WEI) vi = pα
i · ai

Convolution (CONV) vi =
Pn−1

j=0 pj mod n · a(i−j) mod n

Head only (HEAD) vi = ai

Vector (VECT) v is computed directly from the corpus
by treating compounds as single words

based semantic space smoothed by SVD.

Human similarity judgment
In order to collect the data on human similarity judgment,
we conducted an experiment using Japanese compound-word
pairs. (English compound-word pairs were not used for the
experiment, because a sufficient number of native English
speakers could not be recruited.) Fourteen participants, who
were all native speakers of Japanese, were assigned all the
100 Japanese compound-word pairs and asked to rate the se-
mantic relatedness between the compound and the word of
each pair. These pairs were rated on a 7-point scale ranging
from 1 (unrelated) to 7 (related). The presentation order of
those pairs was randomized for each participant.

Procedure
Given a semantic space and a set P of compound-word pairs,
the compound vector of each compoundwas computed by the
composition algorithms. Afterward, the similarity between
the compound and the paired word was calculated as the co-
sine between the computed compound vector and the vector
for the paired word. Using these cosine values for the set
of compound-word pairs, we evaluated the composition algo-
rithms in the following two ways.

Correlation analysis Spearman’s correlation coefficient
was calculated between the computed cosine values and the
mean human ratings for compound-word pairs.

Word ranking For each compound-word pair (c i, wi), the
rank ri of the paired word wi was assessed by computing the
cosine similarity between ci and all words (including wi) in
the space, and sorting all words in descending order of the co-
sine. A higher rank implies that the word wi is semantically
more related to the compound ci. Next, all compound-word

Table 2: Correlation coefficients between human similarity
ratings and the cosine similarity computed by the composi-
tion algorithms

PPMI LSA PPMI+SVD
Algorithm Fam Nov Fam Nov Fam Nov
CENT .376 .381 .367 .319 .446 .466
DILA .359 .348 .443 .405 .445 .422
PRED .410 .343 .378 .264 .433 .422
+MUL .388 .446 .446 .310 .322 .094
+AVE .331 .412 .474 .213 .408 .321
+PARTMUL .340 .432 .446 .308 .346 .108
+PARTAVE .336 .407 .441 .218 .403 .345
COMP .360 .331 .346 .403 .432 .410
+MUL .219 .397 .296 .413 .442 .127
+AVE .247 .333 .325 .239 .461 .348
+PARTMUL .245 .355 -.238 -.079 .057 .050
+PARTAVE .262 .314 -.249 -.218 .051 .122
MULT .393 .414 -.149 .005 .037 .002
+AVE .369 .413 -.194 -.086 .000 .056
+WEI .392 .409 .281 .437 .483 .310
CONV .294 .123 .216 .347 .418 .386
HEAD .287 .260 .361 .411 .383 .365
VECT .331 — .416 — .404 —

p < .05, p < .01, p < .001

Fam=Familiar compounds, Nov=Novel compounds.

pairs in the set P were sorted in ascending order of the rank
ri. The sorted list of the rank ri is denoted as r′1, · · · , r′|P |.
Finally, the overall performance of each algorithm was mea-
sured by the median rank� r ′

0.5|P | and first quartile rank (i.e.,
25th percentile)� r′0.25|P | of the sorted list.

Result
In order to compute the performance of the composition algo-
rithms with free parameters, we estimated the optimal param-
eter values using a leave-one-out cross-validation procedure.
The cosine similarity and the rank of each compound-word
pair was calculated, with the optimal parameters estimated
using all the remaining pairs as training data. The parameter
m (for PRED) was optimized over integers ranging between
1 and 50 and between 100 and 500 in steps of 50, the param-
eter k (for PRED and COMP) over integers ranging between 1
and 10, the parameter λ (for DILA) over real numbers rang-
ing between 1.1 and 10.0 in steps of 0.1, and the parameter
α (for MULT+WEI) over real numbers ranging between 0.01
and 1.00 in steps of 0.01. The composition algorithms we
compared in the experiment are listed in Table 1 for refer-
ence. Note that two non-compositional methods (i.e., HEAD
and VECT) are considered for purpose of comparison.
Table 2 shows correlation coefficients between human sim-

ilarity rating and cosine similarity computed in the three se-
mantic spaces. Concerning the superiority between the ad-
ditive model and the multiplicative model, the result is al-
most consistent with our hypothesis. In the PPMI-based
space, the multiplication algorithm (MULT) performs bet-
ter than the additive models (i.e., CENT, DILA, PRED, and
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Figure 1: Boxplots of the rank of cosine similarity for compound-word pairs computed in the PPMI-based semantic space
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Figure 2: Boxplots of the rank of cosine similarity for compound-word pairs computed in the LSA-based semantic space

COMP), although for familiar compounds it performs worse
than the predication algorithm. On the other hand, in the
LSA-based semantic space, the multiplication algorithm does
not achieve a significant correlation with human judgment,
while the additive algorithms are significantly correlated with
human judgment. In addition, the smoothed PPMI space
(i.e., PPMI+SVD) shows the same tendency, thus suggesting
that smoothing by SVD disables the function expected by the
component-wise multiplication regardless of the initial ma-
trix and weighting function.
Concerning the proposed algorithms, the extended mul-

tiplication algorithms (i.e., MULT+AVE, MULT+WEI) can-

not improve the performance in the PPMI-based space, but
the weighted multiplication (MULT+WEI) considerably im-
proves the performance for the semantic space without di-
mension semantics (i.e., LSA and PPMI+SVD). This surpris-
ing finding suggests that moderate weighting enables themul-
tiplicative model to work in these spaces.
The predication and comparison algorithms are improved

by some modification methods, especially by multiplying all
the vectors (i.e., +MUL), when novel compounds are consid-
ered. Furthermore, some modifications also improve the per-
formance for the semantic spaces whose dimensions do not
represent distinctive features; the predication algorithm per-
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forms best for familiar compounds in the LSA-based space
by geometrically averaging all the vectors (i.e., +AVE), and
the averaged comparison algorithm (COMP+AVE) performs
nearly best for familiar compounds in the smoothed PPMI
space. Simple multiplication (+MUL) also improves the per-
formance, but the partial extensions (i.e., +PARTMUL, +PAR-
TAVE) seem not to improve the performance.
Figures 1 and 2 respectively show the results of the sim-

ilarity ranking of compound-word pairs for the PPMI-based
and LSA-based spaces. The result is almost consistent with
the result of the correlation analysis. In the PPMI-based
space, the multiplication algorithm (MULT) performs better
than the additive models, while in the LSA-based spaces it
performs much worse than the additive models. The exten-
sions of the multiplication algorithm do not improve the per-
formance in the PPMI-based space, but the weighted multi-
plication considerably improves the performance in the LSA-
based space. The result of the multiplicative modifications
(i.e., +MUL, +AVE, +PARTMUL, +PARTAVE) for the pred-
ication and comparison algorithms slightly differs between
the word ranking test and the correlation analysis. In the
word ranking, the multiplicative modifications consistently
improve the performance in the PPMI-based space, although
the correlation analysis shows that only some modifications
do. Most of these improvements observed in the PPMI-based
space are not obtained in the LSA-based space. Note that,
although not shown in this paper due to lack of space, the re-
sults of the smoothed PPMI space do not significantly differ
from the results of the LSA-based space.

Discussion
The obtained finding confirms our working hypothesis that
the component-wise multiplication works effectively in the
semantic spaces whose dimensions represent distinctive fea-
tures; when reduced by SVD, the dimension of semantic
spaces itself loses a semantics, and thus, the component-wise
multiplication does not work in those spaces. It follows from
this hypothesis that the modification of the additive models by
replacing the vector addition with the component-wise multi-
plication also does not work in those spaces. The experiment
demonstrates that in most cases it is true. Although in some
cases the multiplicative modification appears effective in the
smoothed space, we have no idea whether it is a robust finding
or an artifact of a particular experimental setting. Further-
more, the multiplicative modification improves the additive
models in the space with dimension semantics, but its degree
is not so high. It is interesting for further research to explore
in detail the possibility of improving the additive models us-
ing the multiplicative model.
A more interesting finding is that the multiplicative model

itself can greatly improve by the simple weighting scheme,
although the improved performance does not always exceed
the performance of the additive models. We are developing a
more sophisticatedmethod for extending the component-wise
multiplication so that the multiplicative model works in any
semantic space.
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