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Abstract

Most of existing metaphor studies address comprehension of
nominal metaphors like “My job is a jail” and predicative me-
taphors like “He shot down all of my arguments”. However,
little attention has been given to how people comprehend ad-
jective metaphors such as “red voice”. In this paper, we ad-
dress adjective metaphors and argue that adjective metaphors
are comprehended via a two-stage categorization process. In
a two-stage categorization process, the adjective of an adjec-
tive metaphor evokes an intermediate category, which in turn
evokes an abstract category of property to be mapped onto the
target noun, rather than directly creating a category of prop-
erty as predicted by the categorization theory. We then test
our argument by means of computer simulation in which the
meanings of adjective metaphors are computed from the rep-
resentations of the adjective and the noun in a multidimen-
sional semantic space constructed by latent semantic analy-
sis. In the simulation, three algorithms for adjective metaphor
comprehension, i.e., two-stage categorization, categorization
and comparison, were compared in terms of how well they
mimic human interpretation of adjective metaphors. The sim-
ulation result was that the two-stage categorization algorithm
best mimicked human interpretation of adjective metaphors,
thus suggesting that the two-stage categorization theory is a
more plausible theory of adjective metaphor comprehension
than the categorization theory and the comparison theory.

Keywords: Metaphor comprehension; Computational mod-
eling; Latent semantic analysis (LSA); Adjective metaphor;
Two-stage categorization

Introduction
Many studies in the domain of cognitive science have been
made on the mechanism of metaphor comprehension. Al-
though they have paid much attention to nominal metaphors
such as “My job is a jail” (e.g., Bowdle & Gentner, 2005;
Gentner, Bowdle, Wolff, & Boronat, 2001; Glucksberg, 2001;
Jones & Estes, 2006; Utsumi & Kuwabara, 2005) and pred-
icative metaphors such as “He shot down all of my argu-
ments” (e.g., Lakoff & Johnson, 1980; Martin, 1992), little
attention has been given to adjective metaphors such as “ar-
gumentative melody” and how they are comprehended. Some
studies (e.g., Shen & Cohen, 1998; Werning, Fleischhauer, &
Beşeoğlu, 2006; Yu, 2003) have focused on a synesthetic me-
taphor, a kind of adjective metaphor in which an adjective de-
noting the perception of one sense modality modifies a noun
denoting a different modality. However these studies only ex-
amine how the acceptability of synesthetic metaphors can be
explained by the pairing of adjective’s and noun’s modalities,
rather than exploring the mechanism of adjective metaphor
comprehension.

In this paper, we address the problem of how adjective
metaphors are comprehended and argue that adjective meta-

phors are comprehended via a two-stage categorization pro-
cess, which is an extended view of Glucksberg’s categoriza-
tion theory (Glucksberg, 2001; Glucksberg & Keysar, 1990).
We then test our argument by means of computer simulation
of adjective metaphor comprehension. For this purpose, we
use a semantic space constructed by latent semantic analysis
(LSA) (Landauer & Dumais, 1997) and provide a computa-
tional model of the two-stage categorization process, together
with computational models of other possible processes for ad-
jective metaphor comprehension such as categorization and
comparison. In the computer simulation, we examine how
well a computational model embodying each metaphor the-
ory mimics human comprehension by comparing the inter-
pretations of metaphors obtained by the computer simulation
with human interpretations of the same metaphors obtained
in a psychological experiment (Sakamoto & Sano, 2004).
The metaphor theory that achieves the best simulation perfor-
mance can be seen as the most plausible theory of adjective
metaphor.

Adjective Metaphor Comprehension

Metaphor comprehension can be viewed as the process of
finding relevant features (or predicates) that constitute the
metaphorical meaning from the interaction between a source
concept and a target concept, i.e., the process of generating
the modified target concept in which some features or proper-
ties are highlighted and some other features are downplayed.
In the case of adjective metaphors, the target concept is ex-
pressed by the head noun and modified by the source concept
expressed by or associated with the adjective. The problem
is how people determine which features of the target concept
are highlighted or downplayed by the source concept.

One probable theory that can explain the mechanism of
adjective metaphor comprehension would be the categoriza-
tion theory of metaphor proposed by Glucksberg and his col-
leagues (Glucksberg, 2001; Glucksberg & Keysar, 1990).
The categorization theory addresses mainly nominal meta-
phors and argues that people understand nominal metaphors
by seeing the target concept as belonging to the superordi-
nate metaphorical category exemplified by the source con-
cept. Glucksberg (2001) has also argued that predicative me-
taphors function very much as do nominal metaphors; just as
nominal metaphors use vehicles that epitomize certain cat-
egories of objects or situations, predicative metaphors use
verbs that epitomize certain categories of actions. Some em-
pirical evidence in favor of this view of predicative meta-
phors was also provided by Torreano, Cacciari, and Glucks-
berg (2005). Therefore, although they do not explicitly men-



tion adjective metaphors in their works, it is likely that the
same argument can be applied to adjective metaphors, that
is, adjective metaphors use adjectives that epitomize certain
categories of properties. According to this view, an adjective
metaphor “red voice”, for example, is comprehended so that
the source concept red evokes an ad hoc category of property
like “scary, screaming and dangerous” and such metaphorical
property is mapped onto the target concept.

Against the categorization theory of adjective metaphors,
we propose a two-stage categorization theory. The intuitive
idea behind two-stage categorization is that correspondences
between the properties literally expressed by the adjective and
the properties to be mapped onto the target concept would be
indirect, mediated by an intermediate category, rather than
direct as predicted by the categorization theory. In the case
of “red voice” metaphor, for example, the adjective red first
evokes an intermediate category “red things”, to which blood,
fire, passion, apple, danger typically belong. Then exemplars
relevant to the target concept voice such as blood, passion and
danger are selected and they evoke a final abstract category of
property like “scary, screaming and dangerous”. 1

An alternative, but probably less likely, explanation of ad-
jective metaphor comprehension is given by the comparison
theory of metaphor (Gentner, 1983; Gentner et al., 2001).
This theory argues that metaphors are processed via a com-
parison process consisting of an initial alignment process be-
tween the source and the target concepts followed by a pro-
cess of projection of aligned features into the target concept.
According to the comparison theory, the “red voice” meta-
phor is comprehended in such a way that two concepts red
(or redness) and voice are aligned, some features such as
ones about scariness, scream or danger are found, and they
are mapped onto the target noun.

In the rest of this paper, we examine which of these three
theories best explains the mechanism of adjective metaphor
comprehension by comparing them in terms of how accu-
rately computational models embodying these theories sim-
ulate human behavior.

Computational Model
Vector Space Model
A vector space model is the most commonly used geomet-
ric model for the meanings of words. The basic idea of a
vector space model is that words x are represented by high-
dimensional vectors v(x), i.e., word vectors, and the degree
of semantic similarity sim(x, y) between any two words x
and y can be easily computed as the cosine cos(v(x), v(y))
of the angle formed by their vectors.

Word vectors are constructed from the statistical analy-
sis of a huge corpus of written texts in the following way.
First, all content words in a corpus are represented as m-
dimensional feature vectors, and a matrix A is constructed
using n feature vectors as rows. Then the dimension of M ’s
rows is reduced from m to l. A number of methods have been

1Our preliminary experiment demonstrated that figurative mean-
ings of adjectival metaphors with color adjectives were not directly
associated with adjectives, but could be explained more appropri-
ately by considering intermediate concepts associated with both ad-
jectives and target nouns. This finding may lend support to our view
based on two-stage categorization.

proposed for computing feature vectors and for reducing di-
mensions (Utsumi & Suzuki, 2006). In this paper, we used an
LSA technique (Landauer & Dumais, 1997) for constructing
word vectors. LSA uses the term frequency in a paragraph
as an element of feature vectors, and singular value decom-
position as a method for dimensionality reduction. LSA was
originally proposed as a document indexing technique for in-
formation retrieval, but several studies (e.g., Kintsch, 2001;
Landauer & Dumais, 1997) have shown that LSA success-
fully mimics many human behaviors associated with seman-
tic processing.

For example, using a semantic space derived from a cor-
pus of Japanese newspaper used in this paper, similarity
between computer (“konpyuta” in Japanese) and Windows
(“uindouzu” in Japanese; Microsoft’s OS) is computed as .63,
while similarity between computer and window (“mado” in
Japanese; glass in the wall) is computed as –.02.

Metaphor Comprehension Algorithms
In the vector space model, a vector representation v(s) of a
piece of text s (e.g., phrase, clause, sentence, paragraph) con-
sisting of constituent words w1, · · · , wn can be defined as
a function f(v(w1), · · · , v(wn)). Therefore, adjective meta-
phor comprehension is modeled as computation of a vector
v(M) = f(v(wT ), v(wS)) which represents the meaning
of an adjective metaphor M with the noun wT (target) and
the adjective wS (source). In the rest of this paper, I use the
phrase “n neighbors of a word (or a category) x” to refer to
words with n highest cosine similarity to x, and denote a set
of n neighbors of x by Nn(x).

Categorization The algorithm of computing a metaphor
vector v(M) by the process of categorization is as follows.

1. Compute Nm1(wS), i.e., m1 neighbors of the source wS .

2. Selects k words with the highest similarity to the target
noun wT from Nm1(wS).

3. Compute a vector v(M) as the centroid of v(wT ), v(wS)
and k vectors of the words selected at Step 2.

This algorithm is identical to Kintsch’s (2000) predication al-
gorithm and it is also used as a computational model of the
categorization process in Utsumi’s (2006) simulation experi-
ment. As Kintsch suggests, this algorithm embodies the cat-
egorization view in that a set of k words characterizes an ab-
stract superordinate category exemplified by the vehicle.

Two-stage categorization We propose the algorithm of
two-stage categorization as follows.

1. Compute Nm1(wS), i.e., m1 neighbors of the source wS .

2. Selects k words with the highest similarity to the target
noun wT from Nm1(wS).

3. Compute a vector v(C) of an intermediate category C as
the centroid of v(wT ), v(wS) and the vectors of k words
selected at Step 2.

4. Compute Nm2(C), i.e., m2 neighbors of the intermediate
category C.

5. Compute a metaphor vector v(M) as the centroid of
v(wT ), v(wS) and m2 vectors selected at Step 4.



The first three steps, which are identical to the original cate-
gorization algorithm, correspond to the process of generating
an intermediate category. Steps 4 and 5 correspond to the sec-
ond categorization process.

Comparison The algorithm of computing a metaphor vec-
tor v(M) by the process of comparison is as follows.

1. Compute a set of k words (i.e., alignments between the
target wT and the source wS) by finding the smallest i that
satisfies |Ni(wT ) ∩ Ni(wS)| = k.

2. Compute a metaphor vector v(M) as the centroid of
v(wT ) and k vectors computed at Step 1.

This algorithm is proposed by Utsumi (2006). Step 1 corre-
sponds to the initial alignment process, while Step 2 corre-
sponds to the later projection process.

Besides these three models, for comparison purposes, we
also consider a simple combination algorithm by which a me-
taphor vector v(M) is computed as the centroid of the target
vector v(wT ) and the source vector v(wS).

Simulation Experiment
Method
Human experiment For human interpretation of adjective
metaphors, we used the result of the psychological experi-
ment reported in Sakamoto and Sano (2004). The materials
used in the experiment were 50 Japanese adjective metaphors.
They were created from all possible adjective-noun combi-
nations of five adjectives (red [“akai”], blue [“aoi”], yellow
[“kiioi”], white [“shiroi”], black [“kuroi”]) with 10 nouns
(voice [“koe”], sound [“oto”], mind [“kokoro”], feeling [“ki-
mochi”], words [“kotoba”], atmosphere [“funiki”], character
[“seikaku”], past [“kako”], future [“mirai”], taste [“aji”]).

Thirty-eight undergraduate students of the University of
Electro-Communications, who were all native speakers of
Japanese, were assigned to all the 50 metaphors. They were
asked to choose among 24 perceptual adjectives (i.e., fea-
tures) appropriate ones for the meaning of each adjective me-
taphor. For each chosen feature wi of an adjective metaphor
M , the degree of salience sal(wi, M) is then assessed as the
number of participants who chose that adjective. These fea-
tures were used as landmarks with respect to which model’s
interpretation and human interpretation were compared for
evaluation. Note that any adjective chosen by only one partic-
ipant was not included in the analysis. For example, as shown
in the bar graph of Figure 1, seven adjectives were chosen for
the metaphor “black future”, and the adjective dark had the
highest salience, i.e., the number of participants (26 partici-
pants) who listed it was largest.

Computer simulation The semantic space used in the sim-
ulation experiment was constructed from a Japanese corpus of
251,287 paragraphs containing 53,512 different words, which
came from a CD-ROM of Mainichi newspaper articles (4
months) published in 1999. The dimension l of the seman-
tic space was set to 300, and thus all words were represented
as 300-dimensional vectors.

In the computer simulation, for each of the 50 adjective
metaphors, four kinds of metaphor vectors were computed us-
ing the four comprehension algorithms presented in the pre-
ceding section, i.e., categorization, two-stage categorization,
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Figure 1: “Black future” metaphor

comparison and simple combination. In computing the meta-
phor vectors, we varied the parameter m1 in steps of 50 be-
tween 50 and 500, and the parameters k and m2 from 1 to 10.
After that, for all the features wi, · · · , wn chosen for a meta-
phor M in the human experiment, similarity to the metaphor-
ical meaning sim(wi, M) was computed separately using the
four metaphor vectors. Features with higher similarity to the
metaphorical meaning can be seen as more relevant to the in-
terpretation of the metaphor. In Figure 1, for example, the
word dark has the highest similarity to both the metaphor
vectors computed by the categorization algorithm and by the
two-stage categorization algorithm, but a least salient word
calm is also highly similar to the metaphor vectors.

Evaluation measures To evaluate the ability of the model
to mimic human interpretations, we use the following mea-
sures, which were also used in Utsumi’s (2006) simulation
experiment for nominal metaphors.

• Kullback-Leibler divergence (KL-divergence):

D =
n∑

i=1

pi log
pi

qi
(1)

pi =
sal(wi, M)∑n

j=1 sal(wj , M)
(2)

qi =
sim(wi, M) − minx sim(x, M)∑n

j=1{sim(wj , M) − minx sim(x, M)} (3)

It measures how well a model simulates the salience dis-
tribution of features relevant to human interpretation, or
in other words, the degree of dissimilarity between human
interpretation pi and computer’s interpretation qi. Hence,
lower divergence means that the model achieves better
performance. In Figure 1, for example, KL-divergence
between the salience distribution of human interpretation
and the similarity distribution of computer interpretation
is 0.546 for the categorization model (m1 = 50, k = 1)
and 0.396 for the two-stage categorization model (m 1 =
50, k = 1, m2 = 1). This result suggests that, in this case,
the two-stage categorization model better mimics human
interpretation than the original categorization model.
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Figure 2: Simulation results: Comparison among the four
comprehension models for adjective metaphors

• Spearman’s rank correlation:

r = 1 − 6
∑n

i=1 d2
i

n3 − n
(4)

di = rank(sim(wi, M)) − rank(sal(wi, M)) (5)

It measures how strongly the computed similarity of rel-
evant features is correlated with the degree of salience of
those features. A higher correlation means that the model
yields better performance. In Figure 1 the two-stage cate-
gorization model yields a higher correlation (r = .46) than
the categorization model (r = .28), which again indicates
that the two-stage categorization model is superior to the
categorization model.

Result
For each of the 50 metaphors, KL-divergences and rank cor-
relations were computed using the four metaphor vectors.
These values were then averaged across metaphors. Concern-
ing KL-divergence, the categorization algorithm achieved the
best performance when m1 =50 and k=1, the two-stage cat-
egorization model did the best performance when m 1 = 50,
k = 1 and m2 = 1, and the comparison model did the best
performance when k = 1. Concerning rank correlation, the
combination of m1 = 450 and k = 1 was optimal for the
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Figure 3: Simulation results of the two-stage categorization
model and the categorization model obtained with various
values of parameters k and m2

categorization model, while the combination of m1 = 100,
k = 7 and m2 = 1 was optimal for the two-stage categoriza-
tion model. For the comparison model, k=6 was optimal.

Figure 2 shows mean divergences and correlations calcu-
lated using these optimal parameters. The two-stage catego-
rization model outperformed the other three models on both
measures. It suggests that the two-stage categorization theory
is the most plausible theory of adjective metaphor compre-
hension. Furthermore, in order to demonstrate that this simu-
lation result in favor of the two-stage categorization theory is
general, not specific to the particular value of the parameters,
we show the simulation results obtained with various values
of parameters in Figure 3. Figure 3(a) shows that, when they
were compared at the same value of k, the two-stage cate-
gorization algorithm had lower divergence (i.e., better perfor-
mance) than the categorization algorithm at almost all the val-
ues of m2, although it had worse performance at some higher
values of m2 and lower values of k. Similarly, as shown in
Figure 3(b), the two-stage categorization algorithm achieved
a higher correlation (i.e., better performance) regardless of
values of m2. These results clearly indicate the plausibility
of the two-stage categorization model as a cognitive theory



of adjective metaphor comprehension.

Discussion

Related Work

Until now there have been some computational studies on me-
taphor comprehension. For nominal metaphors, Thomas and
Mareschal (2001) proposed a connectionist implementation
of comprehending nominal metaphors on the basis of the cat-
egorization theory, but they did not test the validity of their
models in a systematic way, nor did they make a new contri-
bution to the psychological or cognitive theory of metaphor.
Kintsch (2000) proposes an LSA-based computational model
of metaphor comprehension. His predication algorithm is
also used in this study as a model of categorization, but he
did not test its psychological validity as a model of metaphor
comprehension. In addition, his study does not allow for the
fact that some metaphors are comprehended as comparisons.
Lemaire and Bianco (2003) also employ LSA to develop a
computational model of referential metaphor comprehension.
However, they do not address how well it mimics human in-
terpretations; they only showed that it mimics processing time
difference between when supporting context is provided and
when it is not provided. Moreover, their model is theoreti-
cally less well motivated. For adjectival metaphors, Weber
(1991) proposed a connectionist model of adjectival meta-
phors, which can be seen as one computational implementa-
tion of the categorization theory. This model uses two meth-
ods (direct value transference and scalar correspondence) for
establishing semantic correspondences between the proper-
ties literally expressed by the adjective and the properties to
be mapped onto the target concept. However, her model was
not tested in a systematic way, either.

In contrast, our LSA-based computational methodology
used in this study tests the validity of competing metaphor
theories and predicts which is most plausible. Utsumi (2006)
has applied this methodology to nominal metaphors and
demonstrated that the interpretive diversity view of metaphor
(Utsumi, 2007; Utsumi & Kuwabara, 2005) best explains the
mechanism of nominal metaphor comprehension.

Does Two-Stage Categorization Better Explain
Nominal Metaphor Comprehension?

In this paper, we have shown that adjective metaphors are
comprehended via a two-stage categorization process, rather
than via a categorization process or a comparison process.
This raises a new interesting question whether or not people
also comprehend other types of metaphors, especially nomi-
nal metaphors, via a two-stage categorization process.

Recent studies have claimed that people comprehend nom-
inal metaphors as categorizations or comparisons depend-
ing on a metaphor property such as vehicle conventional-
ity (Bowdle & Gentner, 2005), metaphor aptness (Jones &
Estes, 2006) or interpretive diversity (Utsumi, 2007; Utsumi
& Kuwabara, 2005). Especially Utsumi (2007) has demon-
strated through a psychological experiment that interpretively
diverse metaphors are processed as categorizations but less
diverse metaphors are processed as comparisons. Utsumi
(2006) also confirmed this finding by means of computer
simulation. Therefore, the question mentioned above can be
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(b) High-diversity metaphors
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(c) Low-diversity metaphors

� � Categorization (m1 =250) � �Comparison
�� �� Two-stage cat. (m2 =1) + + Two-stage cat. (m2 =2)

⊕ ⊕ Two-stage cat. (m2 =3) × × Two-stage cat. (m2 =5)
�� �� Two-stage cat. (m2 =10) � � Two-stage cat. (m2 =20)
�� �� Two-stage cat. (m2 =50) � � Two-stage cat. (m2 =100)

Figure 4: Simulation results of nominal metaphor compre-
hension (m1 =250)

refined as follows: Does the two-stage categorization pro-
cess better explain comprehension of high-diversity meta-
phors than the categorization process, and comprehension of
low-diversity metaphors than the comparison process?

In order to tackle this question, we conducted an additional
simulation experiment in which the metaphorical meanings
of 40 nominal metaphors such as “Life is a game” were com-
puted by the two-stage categorization algorithm, and the re-
sults were compared with the results of the categorization al-
gorithm and the comparison algorithm obtained in our pre-
ceding study (Utsumi, 2006). The simulation method and
evaluation measures used in this additional experiment were
identical to those used in the main simulation experiment of
this study. For human interpretation of the nominal meta-
phors, the result obtained in a psychological experiment (Ut-
sumi, 2005) was used. (For further details of the simulation
experiment of nominal metaphors, see Utsumi, 2006).

The overall result was that the two-stage categorization al-



gorithm did not achieve better performance than the catego-
rization algorithm and the comparison algorithm. As shown
in Figure 4(a), when the scores of all metaphors were aver-
aged, the categorization algorithm had lower divergence and
higher correlation (and thus better mimics human interpreta-
tion) than the two-stage categorization algorithm at the same
value of the parameter k, regardless of value of m2. Fur-
thermore, Figure 4(b) also shows that the categorization algo-
rithm outperformed the two-stage categorization model even
when metaphors were highly diverse, and Figure 4(c) shows
that, when metaphors were less diverse, the comparison al-
gorithm outperformed the two-stage categorization model.
These findings clearly indicate that people do not compre-
hend nominal metaphors via the process of two-stage cate-
gorization, and the interpretive diversity view (Utsumi, 2007;
Utsumi & Kuwabara, 2005) is still the most plausible theory
of nominal metaphor comprehension. In other words, the pro-
cess of adjective metaphor comprehension essentially differs
from the process of nominal metaphor comprehension.

Concluding Remarks
Our simulation experiment has shown that adjective meta-
phors are likely to be comprehended via a two-stage catego-
rization process. We are now trying to confirm this finding by
a psychological experiment. It would also be interesting for
further work to investigate, both psychologically and compu-
tationally, whether people comprehend predicative metaphors
via a two-stage categorization process.
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